ADAO16808

Stanford Artificial Intelligence Labbn@‘ry July 1975

Memo AIM-262

Computer Science Department
Report No. STAN-CS-75-502

o~

~

by
Odd Petters:»

// /'; P »/; /

Q Research sponsored by

Advance:d Research Projects Agency
ARPA Order No. 2494
-DDC

W_r.nc? (A T
h{ NOV 5 W75 g‘
Uisu.ua;u et
Op B
COMPUTER SCIENCE DEPARTMENT
Stanford University

e et
R e

Approved for pulitc release
Duszibeton Unlizatad

DLETHISUYION SV ATMENT K7

(2 Fe

Synchronization of ConCurrent Processes

|

e s g

e—

SYMCHRONIZATION OF CONCURRENT PROCESSES

by
0. Pettersen

Stanford Uriversity

Artificial Intelligence Laboratory 2

ABSTRACT

The paper gives an overview of commonly used synchronization primitives and
literature, and presents a new form of primitive expressing conditional critical regions.

A new solution is presented to the problem of “readers and writers", utilizing the
proposed synchronization primitive. The solution is simpler and shorter than other known
algorithms. The first sections of the paper give a tutorial introduction into established
methods, in order to provide a suitable background for the remaining parts.

Key Words and Phrases:

Scheduling, process scheduling, synchronization, mutual exclusion, semaphores,
critical regions, parallel programming, multiprogramming, concurrent processes, process
communication, shared variables.

CR Categories: 3.80, 3.82, 4.30, 4.32 -

T his research was supported in part by the Advanced Research Projects Agency of the Office of the
Secretary of Defense under contract DAHC 15-73-C-0435.

The view and conclusions contained in this document are those of the author and should not be
interpreted as mecessarily representing the official policies, either expressed or implied, of the
Advanced Research Agency or the US Government.

& Fresent address:
Stanford Artificial Intelligence Laboratory
Computer Science Dept.
Stanford University
Stanford, CA. 94305

Address alter August 1975
T he Technical University of Norway
Div. of Engineering Cybernetics,
7034 Trondheim - NTH
Norway

. 1. INTRODUCTION.

It has been shown by several authors, for example 1] to (7], that the internal synchronization
8 belween concurrently execuling processes in a multiprogramming and/or mulliprocessor sysiem can be
performed by the use of semaphores exchanged between the processes. Such synchronization becomes
necessary when processos interact intentionally through operation on the same set(s) of data. Commonly,
“erttical ragions” ore being used to provide indivisibility, necessary for proper functioning of operations on
somaphores and other concurrent operations on shared data.
Hoare [3) has proposed a variant of critical regions, by the introduction of conditions for the entry
mnto a critical region. This combines the etfect of semaphores and critical regions, and this principle can be
used as an effective alternative fo semaphores and simple critical regions, since it is more elegant and
powerful when the synchronizat'mn requirements are more complex. The difference between the two
concepls is explained and discusced by Brinch-Hansen in (4]
This paper will give a short review of the principles mentioned, and show how 2 proposed solution in
"readers and writers" problem, has certain undesirable

[4] to a commonly encountered example, the
cifects, as partly also shown in [5). A new form ol conditional critical regions is proposed, and examplified
by a new solution to the “readers and writers" problem. A proot of the solution is also incluiied. The new

solution is hardly more complicated than the one proposed in [4].
A recent paper by Hoare [11) considers the sy! chronization from the operating syster's viewpoint

and presents a semaphore-based solution to a new version of the "readers and writers” problem. | will
comment briefly on that paper and show that also the new version of the problem is easier and simpler

solved by the method proposed in the present paper.
Prosram constructs will be presented in the high-level language PASCAL ([8]), which wis also used

in [4) and [11].
2 CRITICAL REGIONS.

Writing a set of data inio a seclion of memory, or reading it out, generally takes some time and is

pertormed through execution of a serios of primitive operations.
More than one computational process may have a legitime need to operate on the came set of data,

and these cxecutions may overlap in time. If at least one such concurrent process modities the shared data,
the results will be wrong, because reading processes have no way of knowing whether read data are "old"
or "new" The solution to this problem is to provide facilities to prevent such harmful simultaneous
on shared data. One widely accepted method to prevent simultaneous operations is to let such

ormed associated with a "critical region”.
bsiract concept which can be assigned to some

oporalions
critical operations be pert

A critical region of some designation v is an a
ditterent parts of difterent programs, but only to one program at a time. Difterent critical regions,

however, with different designations, are completely decoupled and have no mutual relationships.
In PASCAL, a critical region can be associated with a shared variable v, declared as follows:

sar v & shared T

A critical rogibn is defined, and entered by the notation

(1)

region v do S

where § is a statement executed during the critical region. $ ¢an consist of several statements by enclosing

them between hegin and end.

e e ———a~.

3. SEMAPHORES.
A semaphore is a shared single integer variable, declared as follows in PASCAL:

rar s ¢ semaphore

A semaphorae is initialized to a value, Cs, determined by the intended type of synchronization.
Two primitive (indivisable) operations for the manipulation of a semaphore are wait(s) and signal(s).
Their operation can be described very simply by:

wait(s):

sizs-1;

while s <0 do SUSPEND; (2)
signal(s):

sissels 3)

The use of this can be demonsirated by the following example, borrowed from [2).
A communication buffer is organized as a circular linked list of frames, at least 2 frames long. Two
pointers indicate:

F The first empty frame to insert a message into
R The frame before next frame from which a message is o be withdrawn.

A function, suce(x), supplies the link of the next element.

The synchronization must guarantee that the buffer neither overflows nor underflows. The latter
involves that a message can not be withdrawn before it is deposited. Since we are concerned with two
constraints, two semaphores must be used: Deposit is preceded by wait(frame), and followed by
signal(roady). Accept is preceded by wait(raady) and followed by signal(frame). The initial constants and
conditions arw: frame = Cirame = buffersize, and ready = Cready s 0, and F = succ(R).

The two programs could be:

deoposit: wait(frame);
buffer{F] := message;
F := suce(F);
signal(ready);

accopl: wail(ready);
R := succ(R);
received := buffer[R);
signal(frame);

The operations on semaphores may be visualized as follows:

frame: +— »LJI_
0 Cirame
ready: 1.~L
0
Cready

Fig. L

1
2

|

o

« B

The two pointers shown indicate the posilions atter one deposit more than the number ot accepts
Imtially, the pointers are located at Cirame and Cready. It is easy to see that deposit can be traversed
ceveral limes (i.e. Clrame times) betore congesticn occurs, and accept must be activated. Until then, the
wail(frame) operation will not activate SUSPEND. Similarly, as long as accept lags behind deposit,
signal{r cady) will have been traversed more than wait(ready), consequently ready > 0. However, as soon as
one more accepl is attempted, ready will become -1, and the turther processing will be deferred.

As already mentioned, the semaphore operations wait(s) and signal(s), or at least parts ot them, must
bo mdivizable Otherwise, if tor example two different processes simultaneously were performing the
operalion s:zse| on the same variable s, the result could be s(ke2) = s(k)+l or s(k+2) = s(k)+2, depending
on the arbitrary interleave of the basic primitives constituting the operation s := s+1. The correct result of
n operalions, obviously, should be s(ken) = s(k)+n, but, if these n operations are arbitrary interleaved in
time, the result may be anything between s(k) and the correct one. The problem is resolved by ensuring
that the wait(s) and signal(s) operations are indivisable. This preserves the integrity.

It the operations wait(s) and signal(s) themselves are not indivisable, then the consistence is
preserved by pertorming the operations on semaphores within critical regions, which, by definition, are
indivisable.

The two programs of the example should then be modified to:

deposit: region v do wait(trame);
bufter[F] := message;
:= suce(F);
region v do signal(ready);

accept: region v do wait(ready);
R := succ(R);
received := buffer[R];
region v do signal(frame);

An alternative way of expressing essentially the same would be to require the wait and signal
cubroutines to be handled by a scheduler (monitor), for example like [11]). Also then, however, some
meechanism must be provided to ensure the integrity, for example by granting monitor access to only one
process at a lime.

4 CONDITIONAL CRITICAL REGIONS

Conditional critical regions represent a method to synchronize interacting processes, more advanced
than those methods explained in the previous paragraphs.
As suggested by Brinch-Hansen [4), regions could be made conditional by changing the form (1) to

region v when B do S (4)
with the symmetrical complement:
region v do S await B (5)

The tirst form allows the program to enter its critical region v. If condition B does not hold, the critical
repion will be exited immediately. The article calls it "busy waiting”, indicating that the program will loop,
testing tor the condition B to occur. This "busy waiting” is obviously a great disadvantage. Fortunately, it
can very casily be avoided, as will be explained later in this paragraph.

The complementing construct (5) causes statement S to be executed, and then further execution of
the process to be delayed, until condition B becomes true.

Apparently, conditional critical regions are quite different from semaphores and unconditional critical
regions. It is then appropriaie to ask: what are their reiative advantages, and when is the one method
bettor suited than the other? As Brinch-Hansen has discussed in [4), semaphores are well suited for simple
cases, and conditional critical regions superior when the synchronization structure is more complex.

To demonstrate the difference, paper [4] gives two solutions to the so-called "readers and writers”
problom, one with semaphores and unconditional critical regions, and one with conditicnal critical regions.

v el e , : e]

e

4.]. The "readers and writers” problem.

The “readers and writers" problem tends to become a classical example, and has appeared in
caveral papers, as for example [4), [5), (6], [9), (10], [11] It was apparently mentioned first by Courtois
el al. in [6]). It is stated as follows:

Several writers are depositing messages into a buffer, from which several readers will read.
Any number of readers may access tre buffer simultaneously, but a writer shall have exclusive
access. Further, writers have priority over reacers.

Several possible solutions exist. One of the simplest encourtered is Brinch-Hansen's solution with
conditional critical regions in [4). Although his solutions represent a somewhat simplified example, this fact
does not affect the ability to compare the two synchronizing concapts. It is shown in [4] that conditional
critical regions give a far simpler solution than the use of only semaphores. Tke solution preaented in [4]
is?

declaration:
var v ¢ shared record rr, aw ¢ integer end

recder:
region v when aw = 0 do rr sz rr ¢ 1
read;
region v dorr:zrr =13

writer:
region v do aw := aw + | await rrz0;
write;
region v do aw = aw = |3 '

where the identifiers are:

v is the critical region
re denotes number of "running readers"”
aw indicates the number of “active writers”, i.e. writers that have been granted access or are

actually writing.

In his later werk [10), Brinch-Hansen uses a somewhat different form, apparently as an effort to
eliminate cortain undesired effects. This will be discussed later in this paragraph. For our purpose here, to
explain the operation of conditional critical regions, the earlier form is chosen, since this is more similar to
the form 1 will propose in the following. '

* Unfortunately, as pointed out by the authors of [6], Courtois, Heymans, and Parnas, in ¢ comment [5]
to Brinch-Hansens article [4], Brinch=Hansens simple solution is incorrect, or haa at least certain i
undesircable effects:

As far as the algorithm is concerned, the order of admitting waiting readers and writers into the
critical region is quite unpredictable. Thus, it is possible that a writer may wait indefinitely during a stream
of incoming readers. This conflicts with the requirement of priority for writers. Paper [5] points out the
error in [4] but gives no solution, other than referring again to the solution in [6], with semaphores.
Another consequence, but not mentioned i [5), is that region-calls from outgoing readers (second
region=call) may well be blocked from the region by a burst of Incoming readers, thus preventing the § 9
number of “running readers” to be counted down. '

4.2 Discussion of undesirable effects.

it 15 not mentioned in [4], but it seems necessary to require the dispatcher to release region v at
the entrance of the await function. Otherwise, a deadlock will occur: The controlled variable of B is a
shared variable, changed by some other computational process. This operation will usually be placed within
recion v If region v were nol released, no other process could enter it, and condition B would remain false
for ever

But, one could ask: Could not the operation on the controlled variable of B be performed oufside
resion v? No, that would only exceptionally be possible. Generally, that would contradict the purpose of
applying critical regions: To prevent spurious errors, due to unconirolled interleave of operations on
chared variables. Since the controlled variable of B is a shared variable, it would impede the correct
synchronization, if it was changed outside the critical region.

It should be concluded, then, that for stztement (5), the critical region should be released upon
entrance of the waiting state.

Then, no reason remains for keeping the await function linked to the region call of form (5). They
should be separated, making them two individual statements:

regionv do S (6)
and
await B (7)

Statement (6) is identical to the original unconditional region call, of form (1). This splitting would
provide some increased flexibility, since it would permit the use of the await function more freely. One
could argue, that tho linking to the region call has the advantage that the await function can more easily be
recoanized as a terminal part of the region call, so that the dispatcher will not re-enter the process again,
until condition B has become true. With two separate statements, 21 extra and thus unnecessary operating
systems call is a natural consequence. However, il should be a trivial task for a moderately intelligent
compiler to recognize consequlive region and await statements, thus eliminating the superfluous
user-program entry followed by a new operating system call.

Regarding "busy waiting”, it should be noted that a critical region is a resource, competed for by
soveral computational processes. This conflict can only be resolved by some dispalching program, usually a
parl of the operating system. This means that the region statement (4) is handled as a call to the
dispatcher, which generally enters the call into a queue. I should, then, be very easy fo implement B as a
condition for lcaving the queue. Thus, the calling program is completely inactive, until the operating system
activates it again, by assigning region v fo it, after the condition B has become true.

in a more recent work, [10], Brirch-Hansen has apparently eliminated the "busy waiting", by
invoking the dispatcher. He also seems to have tried to avoid the inherent deadlock of his await. His
solution in [10] has certain other drawbacks, however. He has rearranged the form of the conditional
critical region call, to: o

region v do hegin await B; S1 end (8)

cooperating with an unconditional region call like (1):
region v do S2 (9)

where 2 is supposed fo alter condition B. This looks like a deadiock again, referring to the definition of
critical regions. The author circumvents this by defining a special temporary release of region v while the
first process is awaiting for condition B, thus allowing the second process to alter B. This temporary
release is, however, inside hegin and end of region v, and this seems rather uniogical. It seems unlikely to
guess this kind of operation from merely reading the program text, and it gives an unclean internal
oporation of the dispatcher, manipulating the calling program from the main queue and over to another,
temporary queue.

< Pa

A reriark in [I11] points out, that transferring the responsibility for testing of condition B over to the
monitor or dispatcher may impede the efficiency, because expression B must be re-evaluated after every
exit from a procedure of the monilor. There might even be several similar expressions throughout the
program that required similar re-evaluation. Fortunately, this can be improved considerably. Firstly,
efficiency can be improved by the user himself, by applying only simple conditions as B, like X = specified
integer, boo = true, etc. The seconc approach {0 improvement requires some explanation: The inefficiency
15 hardly linked to twhere a testing is effected, whaether this is in the application program, or within the
operating system In any case, this is basically "busy waiting". An alternative to testing of condition B inside
the monitor is to enter the function (wait or region) itself, and perform the testing there. This “"busy
waiting” 15 definitely no more efficient than doing it inside the monitor. Considerable higher efficiency can
be obtained by another and different approach:

The compiler could generate a list for each procedure, containing controlling variables of wait
and conditional critical regions, affected by the particular procedure, together with references to
the wait and region functions. At each procedure exit, only the conditions for the wail and region
functions referred 1o in the list should be re-evaluated.
More philosophically, one might perhaps say, that there are totally three different methods to effect an
action upon the occurrence of a certain condition or event:

. interrup! generated by the event.
. "Busy waiting" with repeated testing.
. Prior to run-lime, prepare a list showing functions affected by a change of value of a variable

within a certain code bady, like a procedure. At run time, this list provides the ability to refer
actions directly, rather than testing the conditions from +he opposite direction.

4.3. Conditional critical regions with priority.

So far, nothing really new has been mentioned about critical regions. | have merely explained certain
consequences and restrictions of methods published earlier, although these restrictions do not seem to have
been fully recognized in the published articles.

It seems now appropriale to propose a form of conditional critical region calls that has none of the
defects mentioned above. The new form is simple to use and to understand, because it is natural and
directly attacks the problem, besides it should give a very efficient code.

The new form introduces priority into forms (4) and (6) above and comprises three system calls:

rogion vizp when B do S (10)

region v:=p do $ (11)
await B (12)

Corresponding to the remarks about flexibility of await B, form (7), the await function can arbitrarily
be used in connection with the conditional (10) or unconditional (11) region call.

The new element, p, is an integer or integer expression denoting the relative priority for granting
the region among competing programs. The assignment visp is not effected until the critical region is
entered, and the scheduler should arrange the queue of requesting access fo the region, according to
decrcasing values of p, such that that one with the highest value will be picked first. The resuit is a
celection according to relative priority. The value of p must be defined before use, and dynamic priority
should be casy to apply.

Naturally, only p=values belonging to calls within the queue are considered, and calls entering the
queue after a region is entered will be queued normally and only considered after the region is released,
‘even if the priority of the process currently in the region has lower priority than the approaching process.
Although this non-preemptive interpretation of priorities should be quite self-evident, it is mentioned here,
to emphasize the fact before starting proving ihe algorithms in the next section.

With this method, the "readers and writers” problem has a solution that is simpler than other
solutions frequently encountered in the literature, besides it has none of the defects cited. In saction 4.5, |
will present an efficient and simple solution to a new version of the problem, presented in [11].

P T B T T R g o

-8 -
The solution to the original version of the problem is:

declaration:

var v : shared record rr, aw : integer end
mitral oalies.

aw:=0; rr:=0;

reader
region v iz | when aw 2 0 dorrisrrely
read;
region v = 3 dorrzrr - e

wriler-
region v := 2 when aw = 0 do aw = |;
areit rr=0;
write;
aw := 0;

Since the forms (10) and (11) are similar to (4) and (5), it should not be surprising to find the rew
solution quite simlar to the one presented in [4]. Some signficant ditferences exist, however:

* The program for readers deviates only in the inclusion of priorities.

% In the program for writer, a new condition when aw=0 is included, making the region call simile~-
to that of the readers.

% The assignment aw:=l replaces aw:zaw+l, since aw will never need to have values different

from O or 1. Thus, a simple boolean variable could be adequate, provided the language synrtrx

would permit.
% The assignment aw:=0, terminating the write statement, need not be performed inside the critical

region.

4.4. Proof of correctness of new solution for "readers and writers” problem.

Let us use the following definitions of "active” and "running” processes, slightly modified from raj:

A process is active from the moment its request of a resource is acknowledged, until tha

resource is released.
A process is running from the instant it has been given permission to use the resource, until i

is released.

The definitions can be visualized:

roguest acknowledged -
permission to use

request l resource release
K running]
— : A
K __aclive 34
L A

-

-9-
With respect o the programs for readers and writers, active and running processes are: '

A roader 15 aclive from the moment it has entered its region v before reading, unlil it has left
region v after reading A reader is running from the moment it leaves region v before reading, ‘

until it has left region v after reading.
A writor is active from the instant it has entered its region v before writing, until it has

executed statement aw:=0 after writing. 1t is running from the instant it has ended the cweit
function and is to start writing, until it has executed statement aw:s=0 after writing.

In addition to identifiers introduced earlier, the following identifier is used in the proof:
rw the number of running writers, according to definition above.

The proof will follow these lines:

l. A set of criteria is established, believed to constitute sufficient conditions for the proof to be
complete.

2. A sol of lemmas is estabhished.

3} Based on the lemmas, each criterion is shown to be satisfied.

CRITERIA FOR CORRECTNESS OF PROGRAMS:

Cl Mutual exclusion of running processes follows two invariants:
X1 = (0¢rwél) (or: X1 = ((rw=0) v (rwzl)))
X2 = ~{rr>0 A rw>0)
X1 and X2 are both invariant true.

G2, (overlaps partly what is expressed by Cl:) ‘
Several readers can be aclive simultaneously, but as soon as a writer has applied for access,
further access of new incoming readers, as well as other writers, is prevented. Running readers
are allowed to conclude. When all running readers have terminated, the pending writer is given $
exclusive access.

c3. No interference (i.e. unwanted or uncontrolled interaction) exists for use of shared variables.

ca. No deadlock can occur.

C5. Incoming writers have priority over incoming readers. (Also expressed implicitly in C2.)

i+ i e n

LEMMAS:

£l
L2.

L3.

LS.

L6.

L7

L8.

LS.

L10.

L1l

o Mg

S S A - . -
2 =, PTG Sy

= i§-=

initially, aw=0 and rrz0. This follows direcily from the program text
Since any change of rr s performed only inside the came critical region, these operations will
not interfere.
Because of L2, and since a read fnction is embraced by the statement rrizrrel ahead of the
function and rri=re=| tollowing the function, a comp eling reader will leave rr undisturbed.
Further, rr will always indicate "number of aclive readers”, which is the number of readers
having ‘inished thewr entry crilical regions but not yst finished their terminating region. Thus
rr20 15 invariant
What is said about readers in L3, is also true tcr writers. For a moment, let us assume that the
siatement aw:=] were aw:zawel. It is performed inside 2 critical region, where the cordition tor
entering this region 1s aw=0. It we could ensure that aw would not change, from the moment it
was tested aw=0 and until ending the execution of aw:zawel, the resuit would be the same it the
jast statemonl wore cubstituted by aw:=1 which is s zhlly simpler.
After one writer has antered, and made aw*1, no more writers can enter, until the first one has
terminated, by executing the statement aw:=0. Thus, ihere can never be more than 1 writer
active, 1 €. aw ¢ only altain the values 0 or 1.
V/hen an outgoing writer 1s {o execute the statement aw:=0, other writers can only be inactive
or waiting for #czess, because of L5. Thus, the statement aw .20 will not interfere with any other
operation on 3~ Consequently, the slatement aw:=0 cen be performed outside the critical region,
and the condi! cn for the simplification made in L4 is valid, even though aw is changed, by aw:=0,
outside the ~eson
If region v I3 available, a running reader can always terminate, since the entry to region v is
unconditional. 't may be delayed it v is unavailable, ie. v is currently granted to some other
process The luration of cuch a delay will only be very short, however, since no process
execules more than a single assignment statement within v
Because of tha invariant rr2C (see L3), and rr is an integer that only changes its value by unity,
the initial v=ive of rr (which is 0), will eventually be attained, it turther access for incoming
readers .exeruting rrizerel) were blocked from some point on, and provided that all read
operations are executed in 2 finite time
A blocking 0! incoming readers, as mentioned in L8, will be performed by an active writer Since
incoming wr ters have priority over readers, an incoming writer will be granted access to v
before any ncoming readers, so that aw:=l will be performed before turther incoming readers
will be con-idered. Then, turther access to region v will be denied for all incoming processes,
and tho blccking mentioned in L8 will be effective. Thus, an incoming writer may be delayed in
ite await-function, but it will remain here only 2 finite time, because rr=0 will eventually become
true, as stzled in L8. it is also important fo note that the "blocking” of incoming readers will be
ettective until the active writer has terminated its writing and executed aw:=0, and this can only
happen after it has passed the awnail rrz0, which invoives the necessity of rr=0. Thus, the
blocking of incoming readers will, once started, remain until rr has been counted down {o rr=0,
as stated ir L8.
A running writer is also active. l.e. state running is 3 subsel of state active, implying the
invariant true:

Y = (0<r véaw)
The Boolean X2 can be changed to:

X2 = (rrt0) v (rw}0)
by De Morgan's theorem. Since rr and rw are ncn-negative integers,
rr}0 implies rrz0 and rw}O implies rw=0. Thus

X2 s (rr=0) v (rws0)

PRCOFS:

Pl.

P2.

P3.

P4

PS.

P6.

> 1%

Becouse of Lemma LS, stating that aw can only attain the values O or 1, invariant Y (see L10)

gives immedialely
rw = { ? } as only possible values.
This proves invariant X| in Cl.

Proof ot X2=true invariant:
According to L11, the proof is complete if we can show that either rrz0 or rw=0. The program

for writer shows, according to the definition for running writers, that when a writer is running,
| e. after the passing of await rr=0, then rr=0. This must last af least until the writer 1s no lenzer
active, since awfO blocks incoming readers, according to LS. When a writer is running, then
rwf0, by definition
This shows that either:

rr=0 or rw=0
which imphes X2 = (rr}0) v (rw}0) is invariant true.

This compleles the proof of Cl.
Tha invariants X1 and X2 are proved in Pl and P2. X1 expresses that only one wriler can be

running at a time. Even stronger, L5 states that only one writer can have access (i.e. be active)
at a time. L9 states that further access of incoming readers is blocked when a reader is aclive.
This lemma further states that the active writer becomes running when all running readers have

terminated. Thus, C2 is satistied.
Proof of C3:

Shared variables are: rr, aw, butfer.
L2 and L6 states no interference for rr and aw. The buffer is changed only by a writer, when it

is running. We have already proved (P3) that when this occurs, no other process has access to
{he butfer. This completes the proof of C3.

Deadlock {Criterion C4):
One necessary condition for deadlock is that a program holds resources while waiting for other

programs to release resources. If this is proved not o be true, then deadlock will not occur.
Resources common to the program, and of significance for the deadlock problem:

rr=0, regionv, aw=0
The only place rr=0 is a condition for proceeding is at the await rr=0 in the writer's program. At
this point, the writer is neither in the region, nor is aw any condition for the execution which
leads to rr=0. Thus, the wailing for rrzf) will not induce deadiock.
region v: Access fo region v can be cienied, either because the region is granted to some other
process, or because awf0. If the reyion is granted to some other process, this will never last
long (L7). If aw/O, a writer must be active, and then aw:z0 remains to be done. Since we have
shown that await rre0 will not involve deadiock, the writer will proceed normally, and finally
execute aw:=0. Thus, the awaiting for aw=0 will not cause deadlock. This shows that the cited
condition, necessary for deadlock, is not satisfied. Deadiock is prevented, and criterion C4 is
salisfied.
Incoming writers have priority over incoming readers:
This follows directly {rom the definition of conditional critical region with priority, and the fact
that p=2 for writers and p=l for readers. Thus, C5 is salisfied immediately.

This completes the whole proof.

£ hia AR

’ 5
T R R

Iy

.*' .

.28 S

*,' (o9

A

e

o IF =

45 A solution to a modified version of "readers and writers"”.

Hoare, in [11], has presented a slight modification of the "readers and writers” problem:
The writers have priority over readers, as originally. However, readers waiting at the end of a
write are given priority over the next writer. The purpose is to avoid the danger of indefinite
exclusion of readers, in a burst of successive writers.
A simple solution of this, applying the method of conditional critical regions with priority, is
presented without a formal and complete proof:

declaration:

var v : shared record rr, aw : inleger end
metral valees.

aw:=0; rr:z0;

reade?
repglion v i=
repion v =
read;
region v =8 dorri=rr=|;

1 doj
3 whenaw =0 dorrizrr ¢ 15

writer
reqion v iz 2 when aw = 0 do aw := 15
aicait rrs0;
write;
aw := 03

Thi= solution appears simpler than that in [11] which, moreover, does not deal with the contention

problem at all.
When comparing with the solution of the original problem, shown in section 4.3, one note

immediately the following details:

* The increase of the highest priority, that one of outgoing readers, from 3 to 4, This should make
no difference, since it is the highest priority in each case.

* The "writer"'s program is unchanged.

* "Reader"'s program is extended with a preceding region call, without action statement.

* Following the first region call for incoming readers is the conditional region call, as originally.
However, the prior.ty is increased beyond that of the writers.

Regzion call of priority | has the same purpose as that of the original solution: Preventing the
continuation in the program if a reader arrives fo this point simultaneously with a writer being on the point
of entering the region. Then, the writer will prevail. After the writer has left the region, the reader will
continue but will be suspended in the next region call, waiting for aw=0, as previously.

If a reader arrives slightly bafore a writer, the reader will enter its region the first time. After this
point, it is puaranteed to continue, also into the next entry of the region, despite the waiting writer,
becairce of the higher priority 3. Thus, the two region-eniries will not be separated, and the reader is
allowed o continue until termination, together with other active readers, before the write is acknowledged.
Readers arriving later must first enter region v with priority 1, however, and this is prevented at this time
by the pending writer, which will be granted access first. This separates incoming readers into two groups:
Those who have not entered tha region the first time: these must wait until the writer has changed aw,
upon which they will be trapped at the next entry of the region. The other group consists of those having
arrived before the writer; these will continue until termination.

While a writer is active, readers may freely enter region v the first time, since this is unconditional.
Then, the, will wait for aw=0. Assuming that another writer arrives together with readers during a write,
the situation is, at the instant when the active writer terminates: Pending readers applies for region v with
priority 3 and thus dominates the waiting writer. Possible new readers, however, having yet not entered
the region the first time, will be delayed, because of the low priority =1, until the writer has passed the
region. At this time, however, aw=] and the new readers must wait until completion of the writer.

e

18+

Consequently, also this time we have effectively separated applying readers into two groups: Those who
enterad during the previous write, and those arriving after. The effect is as required.

5.

(1]

(3)
(1]

(6]
(%]

(8]
(9]

(10]
(1)

REFERENCES

Duikstra, K.W.: Cooperating Sequential Processes. In Programming Languages (F. Genuys, ed.),
Acadame Press, N.Y. 1968, pp. 43-112.

Habermann, AN.: Synchromzation of Commumcating Processes. Comm. ACM 15, 3 (March 1972),
pp. 171-176.

Hoare, C.A.R.: Towards a theary of parallel programming. International Seminar on Operating
Systems T echniques. Beifast, Northern Ireland, Aug.-Scp. 1971,

Brinch-Hansen, P: A Companison of Two Synchronizing Concepts. Acta Informatica I (1972), pp.

190-199.
Courtois, Heymans and Parnas: Comments on “A Comparison of Two Synchromzing Concepts”.

Acta Informatica | {1972), pp. 375-376.
Courtors, Hevinans and Parnas: Concurrent control with "Readers” and "Writers". Comm. ACM

14. 10 (Oct. -71), pp. 667-668
Coffman, E.G. and Denning, P.J.: OPERATING SYSTEMS THEORY. Prentice-Hall, N.J. 1973. pp.

68-74

Wirth,N.: The programming language PASCAL. Acta Informatica I, {1971) pp. 35-63.

Grfliths, P.: SYNVER: A Systan for the Automatic Synthesis and Verification of Synchronous
Processes. Proc. ACM'74 pp. 161-113.

Brinch-Hansen, P.: Operating System Principles. Prentice-Hall 1973.

Hoare, C.A.R.: Momtors, An Operating Systems Structuring Concept. Comm. ACM 17, 10 (Oct.

-14), pp. 549-557.

P

»,o

UNCLASSIFIED

2 -
SECURITY CLASSIFICAT,ON OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE 5 READ INSTRUCFIONS

2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

1. REPORT NUMBER

STAN=-CS=75=502
o and Su e e
4‘lTITLE(d Subtitle) r"l,.l
i -
SYNCHRONIZATION OF CONCURRENT BROCESSES'

'S TYPE OF Repon# PERIOD COVERED
/

’} --

[echnical ,‘H
= .
PAN=-CS=75=5§

5 AUTH_QR{:} S 3 SELS =i] COﬂt.ﬁ“m

DY T e rs

Y /Pettersen /47 |pancd)s ~73-C0U35, &—-

(i % =»,

9. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM ELEMENT, PROJ_ECT, SK
Computer Science Department | AREAD NORK OMT NUNRERS
Stanford University (é,ARPA Order 2o 249k

Stanford, California 94305

11. CONTROLLING OFFICE NAME AND ADDRESS 3 “ q
Col. Dave Russell, Deputy Director ARPA/IPT /// Eiunu"(s ;
13, NUMBER OF ; L

ARPA Headquarters 6ES 4; —— :
1400 Wilson Blvd., Arlington, Va. 22209 13 (/<) /éb /
T4. MONITORING AGENCY NAME & ADDRESS(!f different from Controliing Ollice) 15. SECURITY CL ASS. (of thi ort)
_—

ONR Representative: Philip Surra

Durand Aeronautics Bldg., Rm. 165 UNCLASSIFIED
Stanford University 15a. Soggé.gjtxgnCAT|0N.’DOWNGRAD|NG
Stanford, Ca. 94305
6 DISTRIBUTION STATEMENT (of tiis Report))
4

Releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (of the abstracl entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES]

19. KEY WORDS (Continue on reverse side if necessary and identily by biock number)

Scheduling, process scheduling, synchronization, mutual exelusion, i
semaphores, critical regions, parallel programming, multiprogramming, b
concurrent processes, process communication, shared variables. & 3

20. ANMBTRACT (C.tatinue on reversa side If necessary and identify by biock nimber) ‘1
The paper gives an overview of commonly used synchronization primitives i
and literature, and presents a new form of primitive expressing ‘i

conditional critical regions. "Q,

A new solution is presented to the problem of "readers and writers"f’
utilizing the proposed synchronization primitive. The solution is simpler and
shorter than other known algorithms., The first sections of the paper give a
tutorial introduction into established methods, in order to provide a

suitable background for the remaining parts.
-

DD , Z‘A’z";s 1473 EDITION OF 1 NOV 65 IS OBSOLETE / UNCLASS TFIED

04 s/ / Q O SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

-

URITY CLAS}IF!CAY!ON OF THIS PAGE(When Data Entered)

SEC

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

e ki i
SR e
|

